The yeast mitochondrial proteome, a study of fermentative and respiratory growth.
نویسندگان
چکیده
Saccharomyces cerevisiae is able to switch from fermentation to respiration (diauxic shift) with major changes in metabolic activity. This phenomenon has been previously studied on the transcriptional level. Here we present a parallel analysis of the yeast mitochondrial proteome and the corresponding transcriptional activity in cells grown on glucose (fermentation) and glycerol (respiration). A two-dimensional reference gel for this organelle proteome was established (available at www.biochem.oulu.fi/proteomics/), which contains about 800 intense spots. From 459 spots 253 individual proteins were identified, among them low abundant and hydrophobic proteins, and 37 proteins previously deemed hypothetical, with partially unknown cellular localization. After the diauxic shift, mitochondrial levels of only 18 proteins were changed (17 increased, with 1 decreased), among them proteins involved in the tricarboxylic acid cycle (Sdh1p, Sdh2p, and Sdh4p) and the respiratory chain (Cox4p, Cyb2p, and Qcr7p), proteins contributing to other respiratory pathways (Ach1p, Adh2p, Ald4p, Cat2p, Icl2p, and Pdh1p), and two proteins with unknown function (Om45p and Ybr230p). Apart from an overall increase in mitochondrial protein mass, the mitochondrial proteome remains remarkably constant, even in a major metabolic adaptation. This seemingly disagrees with results of the DNA microarray analyses, where a rather heterogenous up- or down-regulation of genes encoding mitochondrial proteins implies large changes in the proteome. We propose that the discrepancy between proteome and transcriptional regulation, apart from different translation efficiency, indicates a changed turnover rate of proteins in different physiological conditions.
منابع مشابه
Cisplatin cytotoxicity is dependent on mitochondrial respiration in Saccharomyces cerevisiae
Objective(s): To understand the role of mitochondrial respiration in cisplatin sensitivity, we have employed wild-type and mitochondrial DNA depleted Rho0 yeast cells. Materials and Methods: Wild type and Rho0 yeast cultured in fermentable and non-fermentable sugar containing media, were studied for their sensitivity against cisplatin by monitoring growth curves, oxygen consumption, pH changes ...
متن کاملThe Mitochondrial Genome Impacts Respiration but Not Fermentation in Interspecific Saccharomyces Hybrids
In eukaryotes, mitochondrial DNA (mtDNA) has high rate of nucleotide substitution leading to different mitochondrial haplotypes called mitotypes. However, the impact of mitochondrial genetic variant on phenotypic variation has been poorly considered in microorganisms because mtDNA encodes very few genes compared to nuclear DNA, and also because mitochondrial inheritance is not uniparental. Here...
متن کاملEffect of specific growth rate on fermentative capacity of baker's yeast.
The specific growth rate is a key control parameter in the industrial production of baker's yeast. Nevertheless, quantitative data describing its effect on fermentative capacity are not available from the literature. In this study, the effect of the specific growth rate on the physiology and fermentative capacity of an industrial Saccharomyces cerevisiae strain in aerobic, glucose-limited chemo...
متن کاملDefinition of a High-Confidence Mitochondrial Proteome at Quantitative Scale
Mitochondria perform central functions in cellular bioenergetics, metabolism, and signaling, and their dysfunction has been linked to numerous diseases. The available studies cover only part of the mitochondrial proteome, and a separation of core mitochondrial proteins from associated fractions has not been achieved. We developed an integrative experimental approach to define the proteome of ye...
متن کاملMitochondrial inheritance and fermentative : oxidative balance in hybrids between Saccharomyces cerevisiae and Saccharomyces uvarum.
Breeding between Saccharomyces species is a useful tool for obtaining improved wine yeast strains, combining fermentative features of parental species. In this work, 25 artificial Saccharomyces cerevisiae x Saccharomyces uvarum hybrids were constructed by spore conjugation. A multi-locus PCR-restriction fragment length polymorphism (PCR-RFLP) analysis, targeting six nuclear gene markers and the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 279 6 شماره
صفحات -
تاریخ انتشار 2004